Please make note of the following information:

- SAM website www.nrel.gov/analysis/sam/
- SAM on Google Groups groups.google.com/group/sam-user-group
- SAM support email solar.advisor.support@nrel.gov

Introduction to SAM 2010.11.9

Paul Gilman
Webinar
February 7, 2010

Welcome

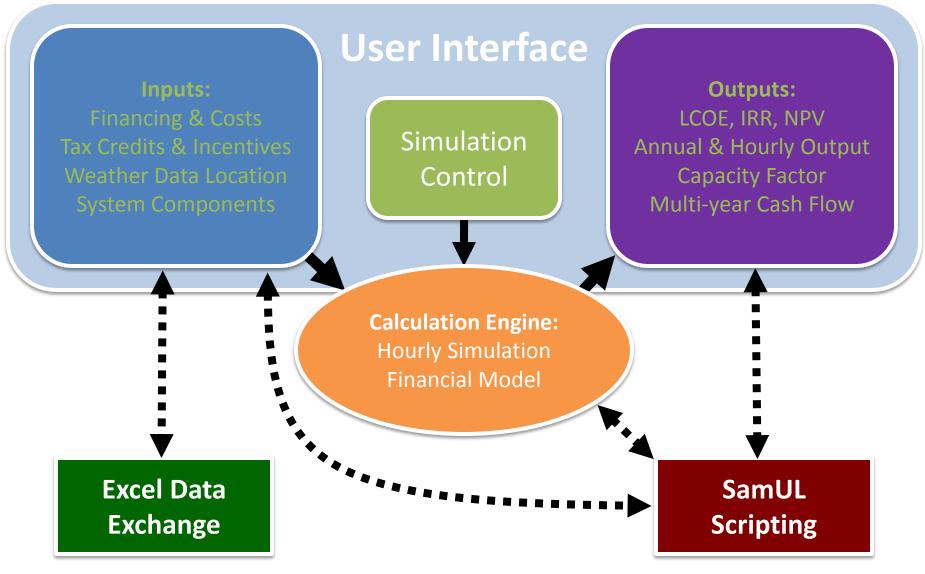
- Paul Gilman
 - Provide user support
 - Write documentation
 - Involved with SAM project since 2005
 - solar.advisor.support@nrel.gov

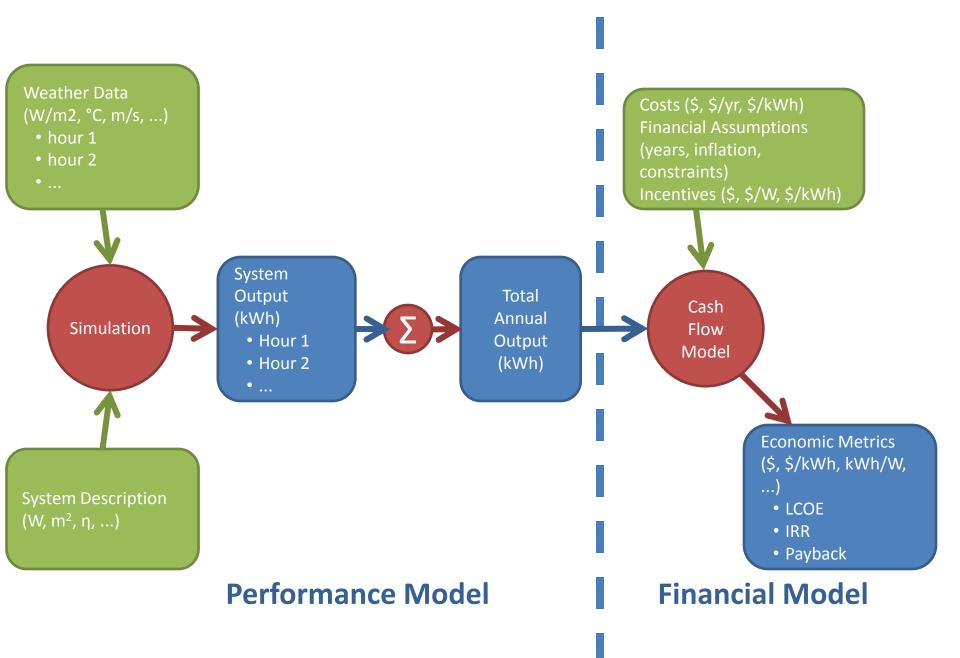
Logistics

- All participants will be muted
- Questions will not be answered during session.
 - Any questions will be posted an answered on Google Groups
 - Post any follow-up questions or discussion on Google Groups
 - groups.google.com/group/sam-user-group
- Will post talking points and recording on SAM website

Introduction

- Overview of software: Will cover enough information to get you started
- Technology focus will be PV
 - PV topics will familiarize CSP modelers with interface
 - CSP topics will introduce optimization and graphing techniques for PV modelers
 - Brief introduction to non-solar technologies
- Three hours is a long time, so feel free to tune in and out as needed
- Will present topics in order of agenda in announcement


Agenda


- Overview of user interface
- Financial structures for residential, commercial and utility projects
- Solar, wind, and geothermal power systems
- Hourly simulations
- Economic and performance metrics
- Graphs and tables of outputs
- Input requirements

What is SAM?

The System Advisor Model (SAM) is a free computer program that calculates a renewable energy system's hourly energy output over a single year, and calculates the cost of energy for a renewable energy project over the life of the project.

Program Structure

Introduction to SAM 2010.11.9

OVERVIEW OF USER INTERFACE

SAM

- What is it?
 - System Advisor Model
 - Calculates a power system's hourly output over the period of one year
 - Calculates a power project's annual costs over a specified analysis period
- Inputs
 - Weather data
 - Characteristics of system
 - Installation and operating costs
 - Financial structure
 - Incentives
- Outputs
 - Hourly power output with monthly and annual averages
 - Net annual cash flow
 - Summary metrics: LCOE, payback period, total annual output, capacity factor
 - Intermediate values available for more detailed analysis

Welcome Page

- Appears when you first start SAM
- Choose how to open the file
 - Sample file
 - New file
 - Recent file
- If you have an old file from SAM 3.0: File → Import SCIF

Files and Cases

- A file contains one or more cases
- Use tabs to display cases
- Cases are like worksheets in an Excel workbook
- Each case contains a complete set of inputs and results
- Use cases to compare different analysis scenarios
 - Technologies
 - Financing structures

Navigation Menu and Input Pages

- Click navigation buttons to display input pages
 - Button labels show summary values
- Input pages display input variables
 - All input variables have default values
 - Default values are samples, not official values from NREL or DOE

Running Simulations

- Review and modify inputs
- Click Run to start simulations and display results
- Click Switch to Graphs and Results Viewer to see results without running simulations
- Click Configure Simulations for advanced analyses

Viewing Results

- Metrics table
- Graphs and charts
 - Display and organize graphs
 - Customize graphs
- Base Case Cashflow
- Tabular Data Browser
 - Build custom tables
 - Run simulations to show hourly data
- Case Summary Spreadsheet (Windows Only)
- Hourly data viewer (Windows Only)

Exporting Graphs and Data

- Metrics table
 - Shortcut menu commands (right-click)
- Graphs
 - Copy graph data and Show graph data buttons
 - Shortcut menu commands (right-click)
- Base Case Cashflow and Tabular Data Browser
 - Copy to clipboard, Save as CSV, and Send to Excel buttons

Notes and Help

- Use Notes to store text about a page
 - Add notes to input pages
 - Clear notes by deleting text in notes box
- Help
 - Press F1 in Windows or command-? in Mac OS to show help topic for a page in SAM
 - Use contents and search to find information in Help

Introduction to SAM 2010.11.9

FINANCIAL STRUCTURES FOR RESIDENTIAL, COMMERCIAL AND UTILITY PROJECTS

Example 1: Commercial PV System

Inputs

- New Project
- Save as "Financing Examples"
- Photovoltaics, PVWatts System Model, Commercial Market, Standard Loan
- Name "Commercial PV Example Default"

Results

- Annual Energy, compare to current usage
- LCOE Nominal, compare to electricity rates
- Payback period

Example 2: Commercial PV System in Portland, Oregon

Inputs

- Case, Duplicate
- Case, Rename, "Commercial PV Example –
 Portland"
- PVWatts Solar Array, 16 kW

Results

- Annual output reduced by about 35%
- Payback period doubles
- NPV negative

Can I improve financing to make project feasible?

- Compare cash flow graphs
 - Look at debt payments in years 6-15
 - Cash flow table shows annual revenue sufficient to cover higher debt payments
- Try increasing debt fraction from 60% to:
 - 80%: NPV is positive
 - 90%: LCOE on par with Phoenix
 - Payback does not change because capital cost and revenue do not change
- Try reducing module cost from \$1.92 to \$0.50
 - Payback drops to 10 years

Example 3: Utility CSP Parabolic Trough System

- Inputs
 - Case, Create
 - Concentrating Solar Power, Physical Trough System,
 Independent Power Producer
 - Review system description
 - Run
- Results
 - PPA Price
 - IRR
 - What price does the project need to earn to cover installation and operating costs?

Utility Financing Inputs

- Inputs not in commercial and residential financing:
 - Construction period
 - PPA escalation rate Often negotiated as part of a power purchase agreement
 - Debt fraction Determines debt-equity ratio, often a controllable parameter in financial negotiations
 - Constraining assumptions Rate of return and debt service coverage requirements for financial partner
 - Optimization Allow SAM to calculate debt fraction and escalation rate that result in lowest PPA price

Example 4: Compare to similar-sized PV system

Inputs

- Case, Create
- Photovoltaics, Component-based Models, Utility Market, Independent Power Producer
- Climate, CA Blythe
- Array, Desired Array Size, 100,000 kWdc

Results

- Use tabs to compare results and inputs
- For this example, results are not meaningful because assumptions are based on default values – need to refine inputs

Example 5: Calculate IRR instead of PPA price

Inputs

- Case, Duplicate
- Case, Rename, "Utility PV Bid Price"
- Select Technology and Market, Utility Market, First Year Bid Price
- Financing, Bid Price, \$0.12/kWh; Escalation, 0.6

Results

- 20% IRR
- Compare to IPP example with 26% IRR and \$0.14/kWh
 PPA price

For California Projects

- Payment Allocation Factors allow timevariable pricing for PPA projects
- Specify factors and time-of-delivery periods
 - PV: Energy Payment Dispatch page
 - CSP: Payment Allocation Factors on Thermal Storage page

Commercial Financing Options

- Apply to all financing options:
 - General
 - Taxes and Insurance
 - Salvage Value
- Loan parameters
 - Standard, mortgage-style debt
 - Debt fraction specifies percentage of total installed costs that project borrows
- Depreciation
 - Treated as positive cash flow

Resources for more Information

- Financial spreadsheets under Help menu
- Help topics:
 - Input page reference, Financing
 - Results, Metrics Table
 - Results, Base Case Cashflow
 - References, Project Economics and Financing

System Costs

- Categories are similar for all technologies
- Capital costs
 - SAM uses total installed costs
 - Categories are for your bookkeeping
- Operating Costs
 - Specify in \$/yr, \$/kW-yr, or \$/kWh-yr
 - Annual schedules
- Default values are estimates: Take ownership of your assumptions
 - See Help, SolarBuzz, SAM website

Summary

- Residential and commercial financing: LCOE represents cost of installing and operating project over the analysis period expressed in cents/kWh
- Utility projects: LCOE represents PPA price over life of project expressed in cents/kWh
- Use cash flow table to examine details of financial analysis
- Use cases to compare different analysis scenarios
- Take ownership of your assumptions do not depend on default input values

Introduction to SAM 2010.11.9

SOLAR, WIND AND GEOTHERMAL POWER SYSTEMS

Photovoltaic Systems

- Component-based models
 - Module and inverter modeled separately
 - Build system on Array page
 - Array shading and self-shading
- PVWatts System Model
 - Entire system modeled as a single DC-to-AC derate factor with temperature correction
 - Array shading

Example 5: 150 kW PV System

- Inputs
 - File, New Project
 - Photovoltaics, Component-based Models, No Financials, "15 kW PV System"
 - Module, Sandia, AstroPower APX-140
 - Inverter, Sandia, SMA SB5000US 240V
 - Array, Desired Array Size 15 kWdc; Fixed 10 degree tilt
- Results
 - Simulation warning
- Refine inputs
 - Module, AstroPower AP-75
 - Array, verify sizes
- Results
 - Annual output
 - Monthly output
 - Hourly output

Choosing a module model

- Component-based or PVWatts
 - For quick analyses or for large numbers of runs, use PVWatts
 - When you need more detailed outputs, use component-based
- Sandia or CEC?
 - Look for a module first in Sandia, then CEC
 - Avoid modeling thin-film modules with CEC
 - If your module is in neither database, look for a similar module, or use simple efficiency
- Use simple efficiency for parametric studies on efficiency or temperature coefficient
- Concentrating PV for CPV modules
- when your module is in neither database (or use a similar module from one of the databs

Example 6: 150 kW PV system in simple efficiency model

Inputs

- Case Duplicate
- Case Rename, "15 kW PV System Simple."
- Module, Simple Efficiency Module; Efficiency, 10.83;
 Temp Coeff, -0.542; Area, 0.633

Results

- Annual output increases by about 8%
- Simple model with constant efficiency does not represent dependence of module conversion efficiency on radiation level

Choosing an Inverter Model

- Sandia Model when you have a particular inverter in mind
- Single-point efficiency for generic inverter, or for parametric studies on efficiency and nameplate capacity

Tips

 Update your version of SAM to put Sandia database in alphabetical order

CSP Systems

- Parabolic trough
- Power tower
- Dish-Stirling
- Generic when you have a table optical efficiencies for a range of sun positions

Overview of Trough Sample File

- Physical or empirical?
 - Use physical for more accurate modeling: Equations based on physical properties of system components
 - Use empirical for faster modeling: Equations based on empirical measurements of SEGS plants
- Climate and Financing input pages are the same as PV
- Default costs based on NREL-sponsored study
 - See Excel Exchange

Solar Multiple

- A way to specify the solar field size as a function of the power block capacity
- SM = 1: At reference radiation, solar field output equals power block design input
- Optimal value depends on location (resource) and cost of solar field components

Parabolic Trough: Basic Design Steps

- Choose a location
- Choose appropriate reference DNI
- Specify power block capacity
- Optimize solar multiple for lowest LCOE
- Lessons for non trough modelers
 - Running an optimization using parametric analysis
 - Creating a custom graph

Example 7: Trough Solar Field Optimization

Inputs

- New project, Concentrating Solar Power, Physical Trough System, Utility Market, Independent Power Producer
- Case name "optimize solar field trough"
- Climate, NV Ely
- Thermal Storage, Hours of storage, 0
- Power Cycle, Design gross output, 55 MWe
- Run, Results, View Hourly Time Series, Boxplot, Collector_DNI-x-CosTh, Ann Max
- Solar Field, Irradiation at Design, 980
- Parametrics, Solar Field, Solar Multiple, 1.25, 2.5, 0.25

Results

LCOE vs Solar multiple

Solar Multiple Optimization with Storage

- Example in sample file
 - Same steps as shown without storage
 - Add hours of TES as parametric variable
 - Plot LCOE vs SM for different TES capacity values
- See instructions in Help

Other technologies

- Solar
 - Power tower
 - Dish-Stirling
 - Generic solar: When you have a table of optical conversion efficiencies for different sun angles
 - Solar water heating
- Non-solar
 - Small-scale wind
 - "Wind Turbine Design"
 - Geothermal

Introduction to SAM 2010.11.9

HOURLY SIMULATIONS AND FINANCIAL MODEL

Simulation

- SAM Uses TRNSYS engine
- View hourly weather data input file
 - DView from Climate page
 - Weather file in weather folder
- View hourly results in different formats
 - Tabular data browser
 - DView
 - Case summary spreadsheet
 - TRNSYS output file

Financial Model

- SAM uses total annual output from simulations as first year output for cash flow calculations
 - First row in cash flow table
 - Output in subsequent years depends on degradation factor on Annual Performance page
- Costs are first-year costs
 - First column in cash flow table
 - SAM calculates out-year costs using inflation rate and any escalation rates

Introduction to SAM 2010.11.9

ECONOMIC AND PERFORMANCE METRICS

Metrics Table

- Annual energy production
- Capacity factor
- LCOE (levelized cost of energy)
- Internal rate of return (IRR)
- Minimum DSCR (debt-service coverage ratio)
- Net present value (NPV)
- PPA Price (power price under a power purchase agreement)

Introduction to SAM 2010.11.9

GRAPHS AND TABLES OF OUTPUTS

Graphs

- Built-in graphs
 - Displaying graphs
 - Exporting graphs
 - Showing graph data
- Creating graphs
 - Modify a graph
 - Create a new graph
- Hourly Data Viewer (DView)

Tables

- On Results page
 - Base case cash flow table
 - Tabular data browser
- In Excel
 - Case summary spreadsheet
 - Export to Excel options

Sliders

- Dynamically change graphs while viewing them
- Only work with financial variables due to calculation speed

Introduction to SAM 2010.11.9

INPUT REQUIREMENTS

Weather Data: Climate Page

- Financial analysis over long periods requires weather data that represents "typical" weather at a site
 - TMY2
 - TMY3
 - Perez: Solar Prospector or Location Lookup
- Typical year data for non-U.S. locations is limited
 - EnergyPlus
 - Meteonorm
- TMY3 Creator allows you to build your own weather file

System Characteristics

- Mathematical models represent physical characteristics of components
 - Equation coefficients describe properties of different types of equipment
- Libraries to select coefficient sets where possible
 - PV modules, inverters
 - HTF, field components for CSP systems
- Default values to help guide you in choosing input values

Project Costs and Financial Assumptions

- System costs
 - Installation costs
 - Operating costs
- Financial assumptions
 - Debt parameters
 - Returns requirements for utility-scale projects
 - Taxes
 - Incentives
 - Tax credits
- Very project- and location-specific
 - Default values provide rough estimates

Summary of Tomorrow's Session

- Comparing cases
- Optimization
- Uncertainty analysis
- Scripting with SamUL
- Excel Exchange
- Generating code to call SAM from Python, C, MATLAB, and VBA programs

Thank You

- Check SAM website for recording and talking points
- Post questions or comments on Google Groups